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Institut für Strömungslehre und Wärmeübertragung, Technische Universität Wien,

Resselgasse 3/322, A-1040 Vienna, Austria
wilhelm.schneider@tuwien.ac.at

(Received 4 October 2003 and in revised form 14 October 2004)

The steady two-dimensional mixed-convection flow past a heated or cooled horizontal
plate of finite length is analysed for large Péclet numbers and weak buoyancy effects.
The plate is assumed to be aligned with the free stream. It is shown that the hydrostatic
pressure jump across the wake, combined with the Kutta condition, gives rise to a
potential flow that can be determined by distributing vortices in the wake as well as
in the plate. Solutions in closed form are obtained for two cases, i.e. laminar flow
of a fluid with very small Prandtl number and turbulent flow. As a result, a lift
force opposite to the buoyancy force and a tangential force opposite to the viscous
drag force are found. For the case of laminar flow of a fluid with very small Prandtl
number, closed-form solutions are also obtained for the temperature distribution and
the heat transfer rate, respectively.

1. Introduction
The paper concerns the effects of weak buoyancy on the flow past a horizontal,

heated or cooled plate that is aligned with the free stream. As the tangential com-
ponent of the gravity force vanishes in this case, buoyancy affects the flow primarily
via the hydrostatic pressure gradient in the thermal boundary layer. This indirect
buoyancy effect has been investigated by several authors (cf. Schlichting & Gersten
2000; Schneider 2001; Steinrück 2001 for recent surveys), assuming – often tacitly –
a plate of semi-infinite extent, apparently with the understanding that, owing to the
parabolic nature of the boundary-layer equations, the results would also apply to
a plate of finite length, say L. This may indeed be true if one surface of the plate
is heated, while the other one is cooled such as to obtain a symmetric flow field
(Robertson, Seinfeld & Leal 1973); but in the more common case of a finite plate
that is either heated or cooled at both surfaces, there is an additional effect that is
primarily due to the hydrostatic pressure difference across the wake, as was noted
recently (Schneider 2000). Continuity of pressure requires the pressure difference
across the wake to be compensated by an outer potential flow superimposed on the
free stream, cf. figure 1. This potential flow may be represented by a continuous
vortex distribution in the wake and in the plate.

The vortex distributions are associated with circulation, and a potential flow with
circulation gives rise to a (positive or negative) lift force, i.e. a normal force acting
on the plate in the direction opposite to the buoyancy force. Furthermore, in an
analogy to the well-known aerodynamic problem of an inclined flat plate, there is
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Figure 1. Temperature perturbation, θ , and pressure perturbation, P , in the wake behind a
heated horizontal plate of finite length (schematic).

also a tangential force due to the so-called leading-edge suction. According to the
analysis given by Oswatitsch (1976), this force is acting in the direction opposite to
the free-stream velocity.

It is obvious that the induced potential flow will also affect the heat transfer at
the plate. Since the pressure perturbations associated with the potential flow and the
hydrostatic pressure perturbations must have opposite signs, we might expect that the
effect of buoyancy on the heat transfer is reduced, perhaps even reversed, as a result
of the induced flow. The analysis will show, however, that the effect of the induced
flow on the heat transfer is more subtle than it appears at the first glance.

The present paper is organized as follows. Upon presenting the basic assumptions
in § 2, the induced potential flow and the forces associated with it are considered in
§ 3. The results of § 3 are based on assumptions that apply equally well to the laminar
flow of a fluid with very small Prandtl number, e.g. a liquid metal, and to a turbulent
flow with very large Reynolds number. The heat transfer problem is considered in
§ 4. Since a treatment of the thermal boundary layer in turbulent flow is not possible
without recourse to turbulence modelling, the analysis of § 4 is restricted to laminar
flow.

2. Basic assumptions
To make a solution in closed form feasible, we shall apply the Boussinesq approxi-

mation and assume that the fluid velocity – in the case of turbulent flow: the mean
flow velocity – differs little from the constant free-stream value, u∞, both in the
potential flow and in the thermal wake, except in a very thin viscous sub-layer. This
assumption is justified if the following conditions are satisfied:

(i) Weak buoyancy effects, i.e. Ri � 1, where Ri is a Richardson number in terms
of the heat supplied at the plate, per unit of time, cf. the definition given below. This
condition not only simplifies the analysis, it is also a necessary condition for preventing
boundary-layer separation (cf. Robertson et al. 1973; Higuera 1997) and/or the onset
of secondary-flow vortices in the boundary layer (cf. Wu & Cheng 1976; Imura,
Gilpin & Cheng 1978; Moutsoglou, Chen & Cheng 1981; Wang 1982; Hall & Morris
1992; Lee, Chen & Armaly 1992). For weak buoyancy effects we may, furthermore,
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discard the peculiar singularities that were apparently first observed by Schneider &
Wasel (1985) and are now known to be associated with eigensolutions (Steinrück
1994) and the existence of sub-layers (Lagrée 2001). Finally, by analogy to the classical
problem of incompressible flow past a flat plate at incidence (Brown & Stewartson
1970; Chow & Melnik 1976; Smith 1983; cf. also the survey by Kluwick 1998), the
assumption of small perturbations provides a basis for applying the Kutta condition
at the trailing edge.

(ii) Either laminar flow of a fluid with very small Prandtl number Pr, or turbulent
flow with very large Reynolds number Re, with Re = ρ∞u∞L/µ, where ρ∞ is the
constant free-stream value of the fluid density and µ is the constant viscosity of the
fluid. In the former case, the viscous sub-layer occupies only a fraction as small as√

Pr of the thermal wake, as in any thermal boundary layer (cf. Schlichting & Gersten
2000, p. 217). In the latter case, the mean velocity defect in the bulk of the near wake
is of the order of the friction velocity, which is as small as 1/ln(Re) as compared to
the free-stream velocity, while the ratio of the thickness of the viscous sub-layer to
that of the defect layer is as small as Re−1 ln(Re), cf. Schlichting & Gersten 2000,
p. 576. For more details, see Kluwick (1998, pp. 302–311). As x → ∞, the velocity defect
in the wake decays, justifying the assumption of small mean velocity perturbations
ever better. Note also that it is not necessary that the whole boundary layer at the
plate is turbulent. Laminar and/or transitional regions in the front part of the plate
are admissible provided the turbulent flow develops into a defect layer and a thin
viscous sub-layer before it reaches the trailing edge.

3. Flow induced by the thermal wake
3.1. Non-dimensional variables

In § 3, the following non-dimensional variables are used. The Cartesian coordinates
x and y refer to the plate length L, while the velocity components u and v (in the
direction of x and y, respectively) refer to the free-stream velocity, u∞. Furthermore,
the pressure difference with respect to the ambient pressure refers to twice the
stagnation pressure, i.e. ρ∞u2

∞. This non-dimensional pressure difference is denoted by
p. To discriminate between the potential flow and the wake flow, capital letters (i.e.
X, Y, U and P ) are used for the latter region without changing the reference quantities,
with the exception of Y , which is defined as Y = y/∆, where ∆ =∆(x) characterizes
the half-thickness of the thermal wake in terms of the plate length, cf. figure 1. There
are, of course, various ways of defining ∆, but this is of no relevance for the present
analysis. In addition, the non-dimensional temperature difference θ = (T − T∞)/T∞ is
introduced, with T∞ as the constant temperature of the free stream. In the case of
turbulent flow, all flow variables, i.e. velocity, pressure and temperature, are to be
understood as time-averaged quantities.

3.2. Integral relationships for the wake (X > 1)

In the framework of the Boussinesq approximation, only two forces contribute to the
pressure difference across the wake, i.e. hydrostatic forces and centrifugal forces. The
pressure perturbation due to centrifugal forces is of the order of κρ∞u2

∞(U 2 − u2)∆,
where κ is the non-dimensional curvature of the wake centreline. Since the wake
curvature is solely due to buoyancy forces, the curvature is very small for small
Richardson numbers. On the other hand, the velocity perturbation in the wake is
also small. Thus, the contribution of the centrifugal forces is small at higher order,
and the pressure difference across the wake is, in a first approximation, equal to the
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hydrostatic one, i.e.

ρ∞u2
∞[P (X, +∞) − P (X, −∞)] = gρ∞βT∞L∆

∫ +∞

−∞
θ dY (X � 1), (1)

where g denotes the acceleration due to gravity and β the (constant) thermal expan-
sivity of the fluid.

The integral appearing on the right-hand side of (1) may be related to the heat
flow rate Q̇, i.e. the heat supplied at the plate per units of time and width. Neglecting
dissipation (cf. Appendix A for justification), the over-all energy balance gives

ρ∞u∞cpT∞L∆

∫ +∞

−∞
Uθ dY = Q̇, (2)

with cp being the isobaric specific heat capacity of the fluid. According to the assump-
tion of small velocity disturbances, U may be replaced by 1 in a first approximation.
Furthermore, in view of the assumption of weak buoyancy effects we may replace Q̇

by Q̇0, which is the heat flow rate due to forced convection under equal conditions.
Combining (1) and (2), we then obtain

P (X, +∞) − P (X, −∞) = Ri (X � 1), (3)

where Ri is a Richardson number defined in terms of the heat flow as follows:

Ri =
gβQ̇0

cpρ∞u3
∞

. (4)

Replacing Q̇ by Q̇0 is, of course, of relevance only if the heat flow is not given, e.g.
in the case of a given plate temperature. In this case, well-known heat transfer rela-
tionships (cf. Schlichting & Gersten 2000, pp. 215–218 for laminar flow with Pr → 0
and pp. 604–606 for turbulent flow, respectively) can be applied to determine Q̇0.

Equation (3) shows that the hydrostatic pressure difference across the wake is
constant. It also shows that the effects of buoyancy are weak if Ri � 1, as has been
anticipated with condition (i) in § 2.

3.3. Potential flow

The hydrostatic pressure difference across the wake is to be compensated by a
potential flow that satisfies the matching condition

p(x, 0±) = P (X, ±∞) (x, X � 1). (5)

The overall hydrostatic pressure difference across the wake is already known from
(3); but the Kutta condition requires compensation of the hydrostatic pressure
perturbation on each side of the plate as the trailing edge is approached. In this
paper, we shall consider the common cases of equal temperature distributions or
equal heat flux distributions at the upper and lower sides of the plate, respectively.
Half of the total heat flow rate Q̇0 is then supplied at each side of the plate, cf. figure 1,
and for symmetry reasons the matching condition (5) together with (3) becomes

p(x, 0±) = ± 1
2
Ri (x � 1). (6)

Other cases of possible interest, such as the case of all the heat supplied at one side
of the plate while the other one is adiabatic, can be treated in a similar manner, if
required.

At the plate the potential flow has to satisfy the boundary condition

v(x, 0±) = 0 (0 < x < 1), (7)
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Figure 2. Plate in channel of width b, with b = (2/π)|Ri|−n → ∞ as Ri → 0, and vortex
distribution (schematic).

expressing tangential flow. Displacement due to the viscous boundary layer is
discarded as a higher-order effect that can be superimposed, if required.

In what follows, the potential-flow solution will be given in terms of the strength of
vortices distributed continuously in the plane of the plate, i.e. along the x-axis, both
in the plate (0 < x < 1) and in the wake region (x � 1) (figure 2). The curvature of the
wake is neglected on the basis of the assumption of small disturbances.

According to a classical result of potential-flow theory, the vortex strength of a
plane vortex sheet is equal to twice the pressure perturbation at the sheet. Thus, (6)
requires a constant vortex strength in the wake region (x � 1). However, applying
Biot-Savart’s law shows that a vortex sheet of constant strength induces velocities
that grow beyond bounds as the sheet extends from a fixed initial point, i.e. x = 1,
to infinity. A similar difficulty is encountered with semi-infinite sink distributions of
constant strength, representing the entrainment into a plane turbulent plume (Taylor
1958) or into a plane turbulent mixing layer (Mörwald 1988). The most obvious
means of dealing with these difficulties is to introduce bounds to the flow field, e.g. a
horizontal wall in the case of the plume (Taylor 1958; Schneider 1991) or a plane of
sources that represents the origin of the free streams in the case of the mixing layer
(Schneider 1991). In a previous investigation of the present problem (Schneider 2000),
the difficulty was circumvented by assuming that the vertical velocity component
vanishes at a large, but finite, distance upstream of the leading edge of the plate.
Bounding the flow field in that way is not quite satisfactory, however, since it leads
to a first-order perturbation of the horizontal velocity component at the upstream
boundary.

In the present paper, another approach is pursued. We consider a flow field that is
bounded by plane walls parallel to the plate, as indicated in figure 2, assuming that
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the channel width b, referred to the plate length, tends to infinity as the Richardson
number Ri tends to zero. To be specific, we put b = (π/2)|Ri|−n, with n=const> 0
and the coefficient π/2 being introduced for later convenience. This appears to be
a formulation of the problem that resembles the unbounded domain, including the
downstream region (see Appendix D), as closely as possible. Besides, it may also
provide a suitable basis for a numerical solution of the problem, which is, however,
beyond the scope of the present work.

The solution to this problem can be found by conventional methods of potential-
flow theory, e.g. by applying the mirror method together with Biot-Savart’s law,
or by introducing a complex potential. Details of the analysis may be found in
Appendix B. Here, it suffices to supply the results for the distributions of pressure
and velocity, respectively, at the plate. The following asymptotic representation for
Ri → 0 is obtained:

p(x, 0±) = ∓ n

2π
Ri ln |Ri|

√
1 − x

x
± 1

2
Ri γ (x), (8)

u(x, 0±) = 1 − p(x, 0±), (9)

with

γ (x) =
1

π2

√
1 − x

x

∫ 1

0

√
ξ

1 − ξ
ln(1−ξ )

dξ

x − ξ
(0 <x < 1). (10)

The Cauchy principal value of the integral is to be taken in the latter equation. The
integral can be evaluated with standard numerical methods. The result is shown in
figure 3. As x → 1, i.e. as the trailing edge is approached, γ (x) tends to the value 1, see
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Appendix C. At the leading edge, the potential-flow solution is singular. Expanding
(10) for small values of x and making use of the integral formulae (according to
‘Mathematica ’)∫ 1

0

ln(1 − ξ )√
ξ (1 − ξ )

dξ = −2π ln 2,

∫ 1

0

ln(1 − ξ )

ξ
√

ξ (1 − ξ )
dξ = −2π (11)

gives

γ (x) =
1

π

[
2 ln 2√

x
+ (2 − ln 2)

√
x + . . .

]
. (12)

It might be of interest to observe that the first term on the right-hand side of (8)
resembles the pressure perturbation for the classical problem of forced flow past a
flat plate at an angle of attack that has the small value − (nRi/2π) ln |Ri−1|.

3.4. Lift force and force due to leading-edge suction

The pressure due to the potential flow with circulation gives rise to a normal force
acting on the plate, i.e. a lift force. Accounting for the contributions from both the
upper and lower surfaces of the plate and, as usual, referring the force to the free-
stream stagnation pressure and to the plate area, we obtain for the lift coefficient, CL,
the relationship

CL = −4

∫ 1

0

p(x, 0+) dx. (13)

Substituting for p(x, 0+) according to (8) and performing the integration gives

CL = −Ri

[
−n ln|Ri| + 2

∫ 1

0

γ dx

]
(14)

with ∫ 1

0

γ dx = 1.193 (15)

obtained from a numerical integration based on the result (10). Since ln|Ri| is negative
for small values of Ri, it follows from (14) that the lift force is in the opposite direction
to the buoyancy force, i.e. the lift force points downward for a heated plate, provided
the thermal expansivity is positive. The lift coefficient as a function of the Richardson
number according to (14) and (15) is shown in figure 4.

The lift force is not the only force induced by the vortex distribution. In addition
there is a tangential force due to the potential flow around the leading edge of the
plate (‘leading-edge suction’). According to Oswatitsch (1976), the tangential force
coefficient associated with a tangential velocity perturbation ε/

√
x (as x → 0, with

ε = const) in incompressible flow is CS = −2πε2. Expanding (8) for small values of x

and making use of (9), (11) and (12) gives

CS = −Ri2

2π
[−n ln |Ri| + ln 4]2. (16)

Note that CS < 0, indicating a force in the opposite direction to the free stream, i.e.
a ‘thrust’, irrespective of whether the plate is heated (Ri > 0) or cooled (Ri < 0). The
coefficient CS as a function of the Richardson number according to (16) is also shown
in figure 4.
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4. Thermal boundary layer at the plate
4.1. Non-dimensional variables, basic equations and asymptotic expansions

The following analysis concerns the effects of weak buoyancy on the two-dimensional
thermal boundary layer at a horizontal plate of constant surface temperature Tp ,
which differs from the constant temperature T∞ in the free stream of constant velocity
u∞. For reasons discussed in § 1, the limiting case of vanishing Prandtl number is
considered. In this case, the thermal boundary layer is inviscid, apart from a very
thin viscous sub-layer, whose effect on the heat transfer may be neglected (cf. Hieber
1973; Leal 1973; Wickern 1991).

The variables describing the boundary-layer flow are denoted by capital letters.
While the tangential components as well as the pressure difference remain unchanged,
i.e. X = x, U = u, P = p, the normal components are stretched according to

Y = y
√

Pe, V = v
√

Pe, (17)

where Pe= u∞L/α is the Péclet number, with α as thermal diffusivity of the fluid.
For symmetry reasons, it suffices to consider only the upper surface of the plate, i.e.
Y � 0.

In addition, the non-dimensional temperature difference

Θ = (T − T∞)/(Tp − T∞) (18)

is introduced. Note that Θ is related to the previously introduced variable θ according
to Θ = θT∞/(Tp − T∞).

The basic equations are the boundary-layer equations governing mixed-convection
flow over horizontal surfaces (cf. Gersten & Schilawa 1978; Gersten & Herwig
1992, pp. 284–289). The viscous terms can be dropped for vanishing Prandtl number
to obtain the following non-dimensional form of the boundary-layer equations for
inviscid flow (with subscripts X and Y indicating partial derivatives with respect to
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X and Y , respectively):

UX + VY = 0, (19)

UUX + V UY + PX = 0, (20)

PY = (Ar/
√

Pe)Θ, (21)

UΘX + V ΘY = ΘYY , (22)

where Ar = gβ(Tp − T∞)L/u2
∞ is the Archimedes number. The appropriate boundary

conditions are

V (X, 0) = 0, Θ(X, 0) = 1, (23)

U (X, ∞) = u(x, 0+), P (X, ∞) = p(x, 0+), Θ(X, ∞) = 0, (24)

with x =X and 0<X � 1.
Equation (24) expresses matching between the boundary-layer flow and the potential

flow, which was considered in § 3.3. In view of (8) and (9), we expand the boundary-
layer variables in terms of small Richardson numbers as follows:

U = 1 − nRi ln|Ri|U1(X, Y ) + Ri[U2c(X, Y ) + U2h(X, Y )] + . . . , (25)

V = −nRi ln|Ri|V1(X, Y ) + Ri[V2c(X, Y ) + V2h(X, Y )] + . . . , (26)

P = −nRi ln|Ri|P1(X, Y ) + Ri[P2c(X, Y ) + P2h(X, Y )] + . . . , (27)

Θ = Θ0(X, Y ) − nRi ln|Ri|Θ1(X, Y ) + Ri[Θ2c(X, Y ) + Θ2h(X, Y )] + . . . . (28)

In order to facilitate the physical interpretation of the results to be given below, the
terms of order O(Ri) have been split into two parts, the first one being associated
with circulation (subscript c), the second one being due to the hydrostatic pressure
perturbation (subscript h). The terms of the order O(Ri ln|Ri|) are solely due to
circulation.

The leading terms of the expansions (25) and (28) describe forced convection flow
for Pr= 0, i.e. uniform flow with the well-known self-similar temperature distribution

Θ0 = erfc(η) with η = Y/2
√

X, (29)

cf. Schlichting & Gersten 2000, p. 216. Thus, the non-dimensional overall heat flow
rate in the undisturbed forced flow is given by the relationship

−
∫ 1

0

Θ ′
0(0)X−1/2 dX = 4/

√
π. (30)

This result may be used to express the Richardson number in terms of the (given)
plate temperature. Rewriting (4) in terms of the present non-dimensional variables
and making use of (30) gives

Ri = (4/
√

π)gβ(Tp − T∞)(αL)1/2u−5/2
∞ = (4/

√
π)Ar/

√
Pe. (31)

4.2. Solutions

The boundary-layer equations (19) to (22) and the boundary conditions (23) and
(24) are expanded according to (25) to (28). Taking the first-order solution (29)
into account, the following solutions for the velocity and pressure perturbations,
respectively, are found:

−U1 = P1 =
1

2π

√
1 − X

X
, V1 = 2

√
XηP ′

1(X), (32)
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−U2c = P2c = 1
2
γ (X), V2c = 2

√
XηP ′

2(X), (33)

−U2h = P2h = 1
2

√
πX[ηerfc(η) − (1/

√
π) exp(−η2)], V2h = −(

√
π/4) erf(η), (34)

with γ as defined in (10) and shown in figure 3. Primes indicate derivatives. For
the hydrostatic pressure perturbation at the trailing edge, i.e. for X = 1 and η = 0 +,
equation (34) gives the value P2h = −1/2, which is exactly compensated by the induced
pressure perturbation P2c as obtained from (33) with γ (0) = 1, cf. Appendix C or
figure 3. This is in accord with the Kutta condition.

For the three terms of the temperature perturbation, the following partial differential
equations, written in terms of the linear differential operator

D =
∂2

∂η2
+ 2η

∂

∂η
− 4X

∂

∂X
, (35)

are obtained:

D(Θ1) = −(4/
√

π)η exp(−η2)[P1(X) + 2XP ′
1(X)], (36)

D(Θ2c) = −(2/
√

π)η exp(−η2)[γ (X) + 2Xγ ′(X)], (37)

D(Θ2h) =
√

X exp(−η2)F (η), (38)

where

F (η) = (2/
√

π)η exp(−η2) − 2η2 + (1 + 2η2) erf(η). (39)

Separating the variables, we can reduce (36) to (38) with boundary conditions

Θ1 = Θ2c = Θ2h = 0 on η = 0, (40)

Θ1 = Θ2c = Θ2h = 0 as η → ∞, (41)

to ordinary differential equations that can be solved in closed form by standard
methods. A free constant of integration is determined such as to avoid a singularity
at X =0, which would give an infinite overall heat flow rate. The results are:

Θ1 = X−1[
√

X(1 − X) − arcsin
√

X]Θ̃1(η), (42)

Θ2c = g(X)Θ̃2c(η), (43)

Θ2h = 1
4

√
πX Θ̃2h(η), (44)

where

g(X) = γ (X) − 1

2X

∫ X

0

γ (X̄) dX̄; (45)

Θ̃1(η) = 1
2
π−3/2η exp(−η2), Θ̃2c(η) = π−1/2η exp(−η2), (46)

Θ̃2h(η) = η

[
H (η)

∫ η

0

F (η̄)η̄ dη̄ +

∫ ∞

η

H (η̄)F (η̄)η̄ dη̄

]
, (47)

with

H (η) =
√

πerfc(η) − (1/η) exp(−η2). (48)

The functions defined in (45), (46) and (47) are shown in figures 3 and 5, respectively.
The hydrostatic part of the present closed-form solution, i.e. (44) together with
(47) and (48), is in accord with the numerical solution given by Leal (1973) for a
semi-infinite plate, implying an outer flow without circulation. With respect to the
heat-transfer calculation, see below, of particular interest is the derivative at the plate
surface. From (47) and (48), we can deduce, perhaps a little surprisingly, the following
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exact value (Savić 2003, personal communication):

Θ̃ ′
2h(0) =

∫ ∞

0

H (η̄)F (η̄)η̄ dη̄ = − 1
2
. (49)

Though γ (X) is singular at the leading edge, g(X) remains finite. The singular terms
cancel, as can be seen by inserting the expansion (12) into (45). This gives

g(X) =
4 − ln 4

3π

√
X + . . . (for X � 1). (50)

4.3. Buoyancy force

The total buoyancy force is determined by integrating the hydrostatic pressure
perturbation, i.e. Ri P2h according to (34), over the whole plate, taking into account
both the upper and lower sides of the plate. Referring the force to the free-stream
stagnation pressure and to the plate area, we obtain

CB = −4Ri

∫ 1

0

P2h(X, 0+) dX = 4
3
Ri (51)

for the buoyancy force coefficient, CB .

4.4. Heat transfer results

The local Nusselt number, NuX , is defined as usual, i.e. NuX = q̇LX/k(Tp − T∞) in
terms of the local heat flux, q̇ , at the upper surface of the plate. The thermal
conductivity k is assumed to be constant. Applying Fourier’s law, expanding according
to (28) for small Richardson numbers and using the results of § 4.2, we obtain

NuX =
√

PeX/π
[
1 − nRi ln|Ri|Nu(1)

X + Ri
(
Nu(2c)

X + Nu(2h)
X

)]
, (52)
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Figure 6. Perturbation of the local Nusselt number due to buoyancy for various values of the
Richardson number Ri and n= 1. Solid lines: plate of finite length; dashed-dotted line: semi-
infinite plate. Also shown: asymptotic expansions for X � 1 according to (56) (dashed lines).

where

Nu(1)
X = (1/4πX)[arcsin

√
X −

√
X(1 − X)], (53)

Nu(2c)
X = −(1/2)g(X), (54)

Nu(2h)
X = (π/16)

√
X, (55)

with g(X) as defined in (45). The term
√

PeX/π is in accord with the classical forced-
convection result. As indicated by the superscripts, Nu(2h)

X is due to the hydrostatic
pressure perturbation, whereas Nu(1)

X and Nu(2c)
X are due to circulation. The latter terms

are absent in the case of a semi-infinite plate. The perturbation of the Nusselt number
according to (52) to (55) is shown in figure 6. For the purpose of comparison the
well-known result for the semi-infinite plate is also shown.

Since the velocity perturbation is infinite at the leading edge, cf. (9) together with (8)
and (12), we might also expect a singular behaviour of the Nusselt number. Expanding
(53) and inserting the expansion (12) into (54) shows, however, that the singular terms
cancel.† Hence one obtains

NuX =
√

PeX/π
[
1+(Ri/3π)

(
− 1

2
n ln|Ri|+ln 2−2+3π2/16

)√
X+. . .

]
(X � 1), (56)

† In a previous analysis of the mixed convection flow past a finite horizontal plate (Schneider
2000), the singular terms did not cancel owing to an algebraic error, i.e. there ought to be a minus
rather than a plus sign on the right-hand side of the previous equation (8) and, as a consequence,
the expansions (19) to (21) given by Schneider (2000) are incorrect.
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i.e. the perturbation of the Nusselt number vanishes at the leading edge. The result
(56) may be useful for determining the Nusselt number near the leading edge without
recourse to numerical evaluations of the integrals, cf. figure 6 for comparisons. The
term 3π2/16 in (56) is due to the hydrostatic pressure perturbation. It is the only term
present in the case of a semi-infinite plate. The sum of the other perturbation terms
gives the effect of the potential flow induced at a plate of finite length. This sum is
positive or negative depending on whether |Ri| is smaller or larger than exp[−(4 −
ln 4)/n], i.e. 7.33 × 10−2 for n= 1.

5. Conclusions and discussion
The results show that the flow past a heated or cooled horizontal plate of finite

length is affected by buoyancy in a way that differs substantially from the well-known
case of a semi-infinite plate. The primary effect is an induced potential flow with
circulation. As a consequence, the influence of the trailing edge is not – as in other
cases of boundary-layer flow – confined to a small region near the trailing edge, but
covers the whole plate.

The buoyancy-induced potential flow gives rise to both normal (lift) and tangential
(thrust) forces that resemble the forces observed at inclined flat plates in isothermal
flow. The present analysis has been restricted to weak buoyancy effects, i.e. small
Richardson numbers, in order to avoid boundary-layer separation and other effects
that are beyond the scope of the present work. To deal with singularities associated
with an unbounded flow field, sidewalls parallel to the plate have been introduced at
distances that grow algebraically beyond bounds as the Richardson number Ri, which
is defined in terms of the overall heat flow rate, tends to zero. Analytical results for the
force coefficients have been obtained for laminar flow with large Péclet numbers and
small Prandtl numbers as well as for turbulent flows with large Reynolds numbers.
The results depend on the overall heat supply only, whereas details of the temperature
distribution and/or the heat flux distribution at the plate are of negligible relevance.
The lift and thrust coefficients are found to be of the order of Ri ln|Ri| and (Ri ln|Ri|)2,
respectively. These orders of magnitude are applicable to both laminar and turbulent
flow with the exception of laminar flow of a fluid with very large Prandtl number,
as, in the latter case, the thermal boundary layer is embedded in a viscous boundary
layer of much larger thickness.

The lift force competes with the buoyancy force, which is due to the hydrostatic
pressure perturbation and points in the opposite direction. The value of the buoyancy
force coefficient, CB , depends on details of the heat transfer at the plate. For the partic-
ular case of constant wall temperature in laminar flow with vanishing Prandtl number,
an analytical solution has been given in § 4.3, and other classical cases, e.g. constant
wall heat flux, can be treated similarly on the basis of well-known solutions for the
temperature distribution in forced flow. For more general cases, an upper bound for CB

can be given as follows. As the boundary-layer thickness increases monotonically with
increasing distance from the leading edge, the hydrostatic pressure perturbation at the
plate surface also increases monotonically until it reaches its trailing-edge value. Since
the pressure is continuous at the trailing edge, the trailing-edge value of the hydrostatic
pressure perturbation is ∓Ri/2 at the upper and lower surface, respectively, in the
present non-dimensional notation, cf. (6). Accounting for the contributions from both
the upper and lower sides of the plate, and observing that the pressure is referred to
twice the free-stream stagnation pressure, it follows that CB cannot exceed the value
2Ri. On the other hand, (14) and (15) show that CL is always smaller than −2Ri, cf. also



64 W. Schneider

figure 4. Thus, the lift force, which is directed opposite to the buoyancy force, exceeds
the buoyancy force in magnitude, and the normal force coefficient, Cn =CB +CL, is
negative for positive Richardson numbers, indicating that the net normal force exerted
by a normal fluid (β > 0) on a heated plate of finite length is directed downward. For
a cooled plate (Tp <T∞), all signs are inverted, of course, for symmetry reasons.

Concerning the tangential forces acting on the plate, it is well-known that the drag
coefficient CD decreases with increasing Reynolds number Re both for laminar and
turbulent flow. The suction-force coefficient CS , on the other hand, depends on the
Richardson number only. Thus, the force due to leading-edge suction exceeds the
viscous drag force in magnitude if the Reynolds number is sufficiently large, giving
rise to a net tangential force that is in the opposite direction to the free stream. This
effect may be added to the various means of generating thrust by supplying heat
at the surface of an airfoil, as surveyed by Bartlmä (1975), Broadbent (1976) and
Zierep (1980, 1990). A word of caution is in order, however. The singularity at the
leading edge not only violates the assumption of small perturbations; it may also
be associated, in reality, with various flow phenomena not taken into account in the
present analysis, e.g. boundary-layer separation and cavitation. A suitably shaped,
round leading edge might help to prevent the occurrence of such phenomena.

In view of the strong effect of the finite length of the plate on the velocity
distribution, it appears advisable to reconsider the stability of the mixed convection
flow over horizontal plates, following the way paved by previous investigators (e.g.
Wu & Cheng 1976; Chen & Mucoglu 1979; Moutsoglou et al. 1981; Lee et al. 1992;
Hall & Morris 1992).

As far as the heat transfer is concerned, the largest perturbation terms cancel. As a
result, the effect of the finite length of the plate on the heat transfer is rather modest,
the sign depending on the value of the Richardson number.

The present analysis ceases to be valid near the trailing edge, where the boundary
layers interact with the potential flow. A problem related to the present one concerns
the forced flow past an inclined flat plate, where the interaction leads to modifications
of the Kutta condition and gives rise to a disturbance of symmetry of the potential
flow (cf. Brown & Stewartson 1970; Chow & Melnik 1976; Smith 1983; and the
survey by Kluwick 1998). Thus, future investigations of the trailing-edge problem in
mixed convection flow past a horizontal plate are certainly desirable.
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Appendix A. Justification for neglecting dissipation
A.1. Laminar flow

Making use of well-known relationships for laminar viscous wakes (cf. Schlichting &
Gersten 2000, p. 189), the viscous dissipation, per units of time and length in the
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x-direction, can be estimated to be of the order of (CDL)2ρ∞u7/2
∞ ν−1/2x−3/2, where

CD is the drag coefficient of the plate and ν is the kinematic viscosity of the fluid.
This shows that the effect of viscous dissipation decays as x → ∞ and can, therefore,
not affect the asymptotic behaviour of the wake-induced flow at infinity. Integrating
over the whole wake, i.e. from x of the order of the plate length L to infinity, gives
C2

Dρ∞u7/2
∞ L3/2ν−1/2 as the order of magnitude of the total viscous dissipation, D,

per unit of time. This is to be compared with the total heat flow, Q̇0. Introducing
the Richardson number according to (4), and observing that CD =O(Re−1/2) with
Re = u∞L/ν, we obtain

D

Q̇0

= O

(
1

Ri
√

Re

gβL

cp

)
. (A 1)

The non-dimensional parameter gβL/cp is very small for liquid metals and reason-
able plate lengths, e.g. about 2 × 10−6 for mercury and L =1 m. Since the Reynolds
number is assumed to be large, i.e. typically of the order of 104, dissipation is negligible
even for extremely small values of the Richardson number.

A.2. Turbulent flow

The turbulent dissipation rate per unit of mass is approximately equal to k3/2l−1,
where k is the turbulent kinetic energy per unit of mass and l is the integral length
scale. In a turbulent wake, k and l are known to be of the order of the mean velocity
defect squared and the wake width, respectively (cf. Tennekes & Lumley 1972). These
quantities can be estimated with well-known relationships (cf. Schlichting & Gersten
2000, pp. 667, 668) to obtain (CDL)3/2ρ∞u3

∞x−3/2 as the order of magnitude of the
turbulent dissipation per units of time and length in the x-direction. Thus, as in the
laminar case, the effect of dissipation does not affect the asymptotic behaviour of the
wake-induced flow at infinity. Integrating over the wake gives

D

Q̇0

= O

(
C

3/2
D

Ri

gβL

cp

)
. (A 2)

As noted above, gβL/cp is very small, and since the drag coefficient CD is also very
small, i.e. about 5 × 10−3 for Reynolds numbers near the critical value and even
smaller for very large Reynolds numbers, the dissipation rate is, as in the laminar
case, negligible even for very small values of the Richardson number.

Appendix B. Potential-flow solution
The complex potential f (z), with z = x + iy, is introduced, and the solution will

be given in terms of the strength of vortices distributed continuously in the plate
(0 < x � 1) and in the wake region (x � 1), cf. figure 2. To satisfy the boundary
conditions at the channel walls that are a distance b/2 each apart from the x-
axis, the mirror method is applied. Thus, vortices of strength Riγ̃ (x) are distributed
on lines y = ±2mb, whereas vortices of strength −Riγ̃ (x) are distributed on lines
y = ±(2m + 1)b, with m =0, 1, 2, 3, . . . . This gives the following complex potential
(with ξ being real):

f (z) = z − Ri
i

2π

∫ ∞

0

γ̃ (ξ )

∞∑
m=0

[ln |z − ξ ± 2mbi| − ln |z − ξ ± i(2m + 1)b|] dξ. (B 1)
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Omitting the additive constants ±ln(mb2) as irrelevant for the potential, (B 1) may be
written as

f (z) = z − Ri
i

2π

∫ ∞

0

γ̃ (ξ )

{
ln

∣∣∣∣∣(z − ξ )

∞∏
m=1

[
1 +

(z − ξ )2

(2m)2b2

]∣∣∣∣∣
− ln

∣∣∣∣∣
∞∏

m=1

[
1 +

(z − ξ )2

(2m − 1)2b2

]∣∣∣∣∣
}

dξ. (B 2)

Making use of well-known representations of hyperbolic functions in terms of infinite
products (cf. Abramowitz & Stegun 1965) and omitting a further additive constant,
(B 2) reduces to

f (z) = z − Ri
i

2π

∫ ∞

0

γ̃ (ξ ) ln

∣∣∣∣tanh
π(z − ξ )

2b

∣∣∣∣ dξ, (B 3)

and the following integral representation is obtained for the complex velocity
perturbation:

u − iv =
df

dz
= 1 − Ri

i

2b

∫ ∞

0

γ̃ (ξ ) dξ

sinh [π(z−ξ )/b]
. (B 4)

Of particular interest are the velocity perturbations in the plane of the plate. Since
z → x as y → 0, (B 4) immediately gives the integral representation of the normal
velocity component as follows:

v(x, 0) =
Ri

2b

∫ ∞

0

γ̃ (ξ ) dξ

sinh [π(x − ξ )/b]
. (B 5)

Here, as well as in all similar integrals appearing in this paper, the Cauchy principal
value is to be taken.

Concerning the tangential velocity component, we may observe that the imaginary
part of the integrand in (B 4) vanishes as y → 0, except if ξ → x. Thus, γ̃ (ξ ) can
be replaced by γ̃ (x), and the remaining integral can be evaluated, making use of
well-known relationships for hyperbolic functions, cf. Abramowitz & Stegun 1965.
Together with the linearized Bernoulli equation this gives

u(x, 0±) − 1 = −p(x, 0±) = ∓ 1
2
Ri γ̃ (x). (B 6)

This equation resembles the classical result for the potential flow past a plate in an
unbounded domain, indicating that the effects of the channel-walls on the velocity
perturbation in the plane of the plate cancel for symmetry reasons.

To determine the vortex strength distribution, γ̃ (x), the wake region is considered
first. Comparing (B 6) with (6), we obtain

γ̃ (x) ≡ 1 (x � 1). (B 7)

At the plate, the boundary condition (7) has to be satisfied. On the basis of (B 5), this
gives ∫ 1

0

γ̃ (ξ ) dξ

sinh [π(x − ξ )/b]
+

∫ ∞

1

dξ

sinh [π(x − ξ )/b]
= 0. (B 8)

With the help of well-known integral formulae (cf. Abramowitz & Stegun 1965), (B 8)
becomes ∫ 1

0

γ̃ (ξ ) dξ

sinh [π(x − ξ )/b]
= −b

π
ln

[
tanh

π(1 − x)

2b

]
(0 < x < 1), (B 9)
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and upon expanding both the integrand and the right-hand side of (B 9) for b → ∞,
we obtain ∫ 1

0

γ̃ (ξ ) dξ

x − ξ
= ln

2b

π(1 − x)
(0 < x < 1). (B 10)

This integral equation is of a type that is well known in aerodynamics (cf. Schneider
1978). The solution can be written as an integral of elementary functions as follows:

γ̃ (x) = γ (x) +
1

π

√
1 − x

x
ln

2b

π
(0 < x < 1), (B 11)

with γ (x) as given in (10). Equations (B 6) and (B 11) with b = (π/2)|Ri|−n lead to (8)
and (9).

Appendix C. Vortex strength at the trailing edge
Rather than expanding the solution (10) for x = 1 − δ, with δ → 0, which is a little

cumbersome, it is more convenient to start from the integral equation (B 10). Upon
introducing x = 1 − δ, we obtain∫ 1

0

γ̃ (ξ ) dξ

1 − δ − ξ
= ln

2b

πδ
, (C 1)

which can also be written as

γ̃ (1)

∫ 1

0

dξ

1 − δ − ξ
+

∫ 1

0

γ̃ (ξ ) − γ̃ (1)

1 − δ − ξ
dξ = − lnδ + ln

2b

π
. (C 2)

The first integral can easily be evaluated as −lnδ + ln(1 − δ), which reduces to −lnδ

as δ → 0. Since the second integral and the term ln(2b/π) remain finite as δ → 0, it
follows from (C 2) that γ̃ (1) = 1. Furthermore, γ (1) = 1, as can be seen from (B 11).

Appendix D. Effects of the break-down of the boundary-layer analysis
far downstream

It is well known (cf. Schlichting & Gersten 2000, pp. 187–190, 667–669) that the
wake thickness increases proportional to

√
x. Thus, sufficiently far downstream, the

thermal wake thickness, ∆, becomes comparable to the cannel width, which is of
the order of |Ri|−n, and the boundary-layer analysis ceases to be valid. To be more
specific, we consider laminar and turbulent flows separately.

For laminar flow, ∆(x) is of the order of
√

x/Pe, where Pe is the Péclet number.
Thus, the boundary-layer analysis is inapplicable for values of x that are of the order
of, or larger than, x∗, with

x∗ = Pe |Ri|−2n → ∞ as Ri → 0, Pe → ∞. (D 1)

For turbulent flow, the estimate is a little more elaborate. According to Schlichting
& Gersten (2000, pp. 667–669), the wake thickness ∆(x) is of the order of
(|Q̇0|x/ρ∞u∞cpT∞L)1/2 (in the present notation). To relate this expression to the
Reynolds number Re, the Stanton number St = Q̇0/ρ∞u∞cp(Tp − T∞)L is introduced,
with Tp denoting a characteristic value of the plate temperature. Taking into account
that the Stanton number is of the order of the wall-friction coefficient, which is as
small as (ln Re)−2 (cf. Schlichting & Gersten 2000, pp. 605, 581), we obtain that the
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wake thickness is comparable to the channel width for values of x that are of the
order of, or larger than, x∗, with

x∗ = (ln Re)2|Ri|−2nT∞|Tp − T∞|−1 → ∞ as Ri → 0, Re → ∞. (D 2)

Since the vortex sheet representing the wake extends to infinity, it remains to show
that the wake region that is beyond the limits of applicability of the boundary-layer
theory contributes very little to the potential. Expanding the integral in (B 3) for
ξ/b → ∞, while z/b is in the region of interest, i.e. |z/b| =O(1), it is easily shown
that the integrand is of the order of exp(−πξ/b) = exp(−2|Ri|nξ ). Integrating from
ξ = x∗ to ∞ gives a term of the order of |Ri|−nexp(−2|Ri|nx∗), which, in view of (D 1)
and (D 2) for laminar and turbulent flow, respectively, is exponentially small in both
cases.
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